
 

Beginnings of a document on random 

P4 optimizations and insights 

 
Those considering assembly language optimizations on the P4 should first read the Intel manuals at  

http://developer.intel.com/design/Pentium4/manuals/ especially the Processor Optimization Reference 

manual at http://developer.intel.com/design/pentium4/manuals/248966.htm. 

 

Each section tries to analyze one small aspect of the P4 architecture.  It is followed by a conclusion or 

speculation regarding the observed behavior.  Often, these test cases raise more questions than they 

answer. 

 

Each code snipet is timed in a loop of at least 100 iterations.  Memory is aligned on a 4KB page 

boundary.  The code is then run 200 times and the best timing is reported.  Note my machine is a 1.4 GHz 

P4 with PC600 memory (theoretical bandwidth of 2.4 GB/sec).  Note:  I’ve recently been told that the 

peak bandwidth for PC600 memory is 2.0 GB/sec (that is, PC600 is in reality PC512 memory!).  I’m 

trying to track down a reference for this, so far unsuccessfully. 

 

Note, the Intel manuals sometimes refer to cache line size as 128 bytes and sometimes as 64 bytes.  In the 

examples below I’ll refer to a cache line as 64 bytes.  The L1 cache line size is 64 bytes.  The L2 cache is 

kind of a hybrid 128/64 byte cache.  A cache line fill reads 128 bytes, but my tests show that the L2 cache 

maintains separate dirty bits for each 64-byte chunk. 

 

 

Reading contiguous data 
 

This code reads a contiguous block of memory using 4 bytes at a time.  Timings are done on 3 memory 

size.  4KB will read from the L1 cache only, 64KB will read from the L2 cache only, and 1MB will test 

reading from main memory. 

 
        mem = 4096            ; Read 4KB  

        cnt = mem/64          ; Read 64 bytes per iteration 

        mov     ecx, cnt 

loop1:  mov     eax, [esi]              ; Read one cache line 

        mov     eax, [esi+4]   ; 4 bytes at a time 

        mov     eax, [esi+8] 

        mov     eax, [esi+12] 

        mov     eax, [esi+16] 

        mov     eax, [esi+20] 

        mov     eax, [esi+24] 

        mov     eax, [esi+28] 

        mov     eax, [esi+32] 

        mov     eax, [esi+36] 

        mov     eax, [esi+40] 

http://developer.intel.com/design/Pentium4/manuals/
http://developer.intel.com/design/pentium4/manuals/248966.htm


        mov     eax, [esi+44] 

        mov     eax, [esi+48] 

        mov     eax, [esi+52] 

        mov     eax, [esi+56] 

        mov     eax, [esi+60] 

        lea     esi, [esi+64]   ; Next cache line 

        sub     ecx, 1 

        jnz     loop1 

        lea     esi, [esi-mem]  ; Restore esi 

 

Timing for the above on a 1.4GHz P4 with PC600 memory: 

Mem Clocks  Clocks per 

loop iteration 

Bandwidth Comments 

4096 (4KB) 1037 16.2 5.53GB/sec The expected result 

65536 (64KB) 23625 23.07 3.88GB/sec Any good theories here? 

1048576 (1MB) 1180000 72.02 1.24GB/sec 50% of theoretical throughput.  Why? 

 

Now using MMX instructions: 

 
        mem = 4096                      ; Read 4KB 

        cnt = mem/64                    ; 64 bytes per iteration 

        mov     ecx, cnt 

loop1:  movq    mm1, [esi]   ; Read one cache line 

        movq    mm1, [esi+8]   ; 8 bytes at a time 

        movq    mm1, [esi+16] 

        movq    mm1, [esi+24] 

        movq    mm1, [esi+32] 

        movq    mm1, [esi+40] 

        movq    mm1, [esi+48] 

        movq    mm1, [esi+56] 

        lea     esi, [esi+64]   ; Next cache line 

        sub     ecx, 1 

        jnz     loop1 

        lea     esi, [esi-mem] 

 

Timing for the above on a 1.4GHz P4 with PC600 memory: 

Mem Clocks  Clocks per 

loop iteration 

Bandwidth Comments 

4096 (4KB) 523 8.17 10.96GB/sec As expected. 

65536 (64KB) 15395 15.03 5.96GB/sec  

1048576 (1MB) 1036299 63.25 1.42GB/sec Still not theoretical throughput.  Why? 

 

Now using XMM instructions: 

 
        mem = 4096                      ; Read 4KB 

        cnt = mem/64                    ; 64 bytes per iteration 

        mov     ecx, cnt 



loop1:  movapd  xmm1, [esi]   ; Read one cache line 

        movapd  xmm1, [esi+16]  ; 16 bytes at a time 

        movapd  xmm1, [esi+32] 

        movapd  xmm1, [esi+48] 

        lea     esi, [esi+64]   ; Next cache line 

        sub     ecx, 1 

        jnz     loop1 

        lea     esi, [esi-mem] 

 

Timing for the above on a 1.4GHz P4 with PC600 memory: 

Mem Clocks  Clocks per 

loop iteration 

Bandwidth Comments 

4096 (4KB) 268 4.19 21.40GB/sec  

65536 (64KB) 7766 7.58 11.81GB/sec  

1048576 (1MB) 817776 49.91 1.80GB/sec Still not theoretical throughput.  Why? 

 

Conclusions:  The P4 is unable to hide all the latencies when reading from the L2 cache.  This is 

somewhat surprising, as it should be getting near perfect branch prediction.  Also, how does Intel justify 

claims of 44.8GB/sec for L2 cache bandwidth?  

 

One would hope that the P4 would get closer to its 2.4GB/sec peak bandwidth.  Why isn’t it? 

 

 

Now we will see if using the SSE2 prefetch instructions can get us closer to the 2.4GB/sec theoretical 

bandwidth.  We’ll also see how much as a performance penalty prefetch incurs when reading from the L2 

cache. 

 
        mem = 16*16*4096                ; Read 1MB 

        pages = mem/4096                ; Number of 4KB pages 

        mov     ecx, pages 

        sub     ebx, ebx 

loop0:  mov     eax, [esi+4096]         ; Preload next page TLB 

loop1:  movapd  xmm1, [esi]             ; Read 2 cache lines 

        movapd  xmm1, [esi+16]          ; 16 bytes at a time 

        movapd  xmm1, [esi+32] 

        movapd  xmm1, [esi+48] 

        movapd  xmm1, [esi+64] 

        movapd  xmm1, [esi+80] 

        movapd  xmm1, [esi+96] 

        movapd  xmm1, [esi+112] 

        prefetcht1 [esi+4096]           ; Preload 2 lines in next page 

        lea     esi, [esi+128]          ; Next 2 cache lines 

        add     bl, 256/32              ; 32 iterations per page 

        jnc     loop1 

        sub     ecx, 1 

        jnz     loop0 

        lea     esi, [esi-mem] 



 

Timing for the above on a 1.4GHz P4 with PC600 memory: 

Mem Clocks  Clocks per 64 

byte cache line 

Bandwidth Comments 

65536 (64KB) 8602 8.40 10.67GB/sec Unnecessary prefetch causes some overhead 

1048576 (1MB) 737952 45.04 1.99GB/sec Still not theoretical throughput.  Why? 

 

Conclusions: The prefetch instruction caused a modest 11% overhead (8602 vs. 7766 clocks) when not 

reading from memory.  This overhead may well disappear in real-world code where the loop is actually 

doing real work. 

 

Reading non-contiguous data 
 

This example reads an entire block of memory, but in a non-contiguous fashion. 

 
        mem = 4096                      ; Read 4KB 

        cnt = mem/(4*128)               ; 128 bytes per iteration 

        dist = 64 

        sub     ebx, ebx 

        mov     ecx, cnt 

loop1:  movapd  xmm1, [esi+0*dist]      ; Read 8 cache lines 

        movapd  xmm1, [esi+1*dist] 

        movapd  xmm1, [esi+2*dist] 

        movapd  xmm1, [esi+3*dist] 

        movapd  xmm1, [esi+4*dist] 

        movapd  xmm1, [esi+5*dist] 

        movapd  xmm1, [esi+6*dist] 

        movapd  xmm1, [esi+7*dist] 

        lea     esi, [esi+16]           ; Same 8 cache lines 

        add     bl, 256/4   ; 4 inner loop iterations 

        jnc     loop1 

        lea     esi, [esi-4*16+8*dist]  ; Next set of 8 cache lines 

        sub     ecx, 1 

        jnz     loop1 

        lea     esi, [esi-mem] 

 

Timing for the above on a 1.4GHz P4 with PC600 memory: 

Mem Clocks  Clocks per 64 

byte cache line 

Bandwidth Comments 

4096 (4KB) 268 4.19 21.40GB/sec Same as contiguous 

65536 (64KB) 5900 5.76 15.55GB/sec Much faster! 

1048576 (1MB) 818193 49.94 1.80GB/sec Same as contiguous 

 

Conclusions:  This is very interesting.  If your application’s data fits in the L2 cache, grouping your L1 

cache misses together increases your throughput.  You may want to try preloading L2 cache lines into the 

L1 cache in an earlier iteration.  For example, adding the line 



        mov     eax, [esi+512]          ; Preload line into L1 cache 

in the contiguous read code speeds up the 64KB timing.  Also, if your application uses prefetcht1 to 

preload L2 cache lines and your application is not limited by main memory bandwidth, then preloading 

lines into the L1 cache could speed up your application. 

  

Writing contiguous data 
 
        mem = 4096                      ; Write 4KB 

        cnt = mem/64                    ; 64 bytes per iteration 

        mov     ecx, cnt 

loop1:  movapd  [esi], xmm1   ; Write one cache line 

        movapd  [esi+16], xmm1  ; 16 bytes at a time 

        movapd  [esi+32], xmm1 

        movapd  [esi+48], xmm1 

        lea     esi, [esi+64]   ; Next cache line 

        sub     ecx, 1 

        jnz     loop1 

        lea     esi, [esi-mem] 

 

Timing for the above on a 1.4GHz P4 with PC600 memory: 

Mem Clocks  Clocks per 64 

byte cache line 

Bandwidth Comments 

4096 (4KB) 902 14.09 6.36GB/sec Slower than reading 

65536 (64KB) 14372 14.04 6.38GB/sec Slower than reading. 

1048576 (1MB) 1768230 107.92 0.83GB/sec  

 

Conclusions:  The write-through L1 cache is a killer here.  It takes 14 clocks to write the L1 cache line 

back to the L2 cache.  This places a limit on how fast you can code an application that reads and writes 

only from the L1 and L2 cache.  To keep the CPU fully working you must find 14 clocks of work to do 

for each 64 bytes your program writes.  Clearly, the writes to the L2 cache are not pipelined. 

 

The main memory benchmark is also interesting.  Obviously, the processor needs to read the cache line 

from memory before doing the write operation.  The theoretical maximum bandwidth is thus 1.2GB/sec.  

This example achieves only 66% of theoretical, while the contiguous read example achieves 75% of 

theoretical.  Why? 

 

Now let’s try it using the movntpd instruction.  This should avoid the reading of the cache line prior to 

writing the cache line. 

 
        mem = 4096                      ; Write 4KB 

        cnt = mem/64                    ; 64 bytes per iteration 

        mov     ecx, cnt 

loop1:  movntpd  [esi], xmm1   ; Write one cache line 

        movntpd  [esi+16], xmm1  ; 16 bytes at a time 

        movntpd  [esi+32], xmm1 

        movntpd  [esi+48], xmm1 



        lea     esi, [esi+64]   ; Next cache line 

        sub     ecx, 1 

        jnz     loop1 

        lea     esi, [esi-mem] 

 

Timing for the above on a 1.4GHz P4 with PC600 memory: 

Mem Clocks  Clocks per 64 

byte cache line 

Bandwidth Comments 

65536 (64KB) 45052 44.00 2.03GB/sec Slower, but see conclusions. 

1048576 (1MB) 722035 44.07 2.03GB/sec  

 

Conclusions:  At first glance, the L2 cache test run looks slower than the movapd case.  This is 

misleading.  Using the movapd instruction left the L2 full of dirty cache lines that must one day be written 

to main memory.  What’s worse is the cache lines written to the L2 cache may have ousted other cache 

lines that might have been used in the future.  These dirty cache lines will slow down future cache line 

reads (the cache line will need to be written before the new cache line can be read in).  So, use movntpd 

for those cases where you truly will not be using the data in the future. 

 

The main memory benchmark is also interesting.  I can find no reason why this should be faster than the 

read contiguous data case, but it is.  Why? 

  

Writing non-contiguous data 
 
        mem = 4096                      ; Write 4KB 

        cnt = mem/(4*128)               ; 128 bytes per iteration 

        dist = 64 

        sub     ebx, ebx 

        mov     ecx, cnt 

loop1:  movapd  [esi+0*dist], xmm1      ; Write 8 cache lines 

        movapd  [esi+1*dist], xmm1 

        movapd  [esi+2*dist], xmm1 

        movapd  [esi+3*dist], xmm1 

        movapd  [esi+4*dist], xmm1 

        movapd  [esi+5*dist], xmm1 

        movapd  [esi+6*dist], xmm1 

        movapd  [esi+7*dist], xmm1 

        lea     esi, [esi+16]           ; Same cache lines 

        add     bl, 256/4   ; 4 inner loop iterations 

        jnc     loop1 

        lea     esi, [esi-4*16+8*dist]  ; Next set of 8 cache lines 

        sub     ecx, 1 

        jnz     loop1 

        lea     esi, [esi-mem] 

 

Timing for the above on a 1.4GHz P4 with PC600 memory: 

Mem Clocks  Clocks per Bandwidth Comments 



iteration 

4096 (4KB) 2845 88.25 2.02GB/sec Much slower than contiguous writes 

65536 (64KB) 45516 88.25 2.02GB/sec Also slower than contiguous case. 

1048576 (1MB) 1957866 239.00 0.75GB/sec Slower than reading.  Why? 

 

Conclusions:  Group your writes together!!!  Failure to do so reduces throughput by 66%.  Here each 

cache-line write takes 11 clocks instead of 14 in the contiguous case.  This test below will tell us if write-

combining is helping to some degree. 

 

Now we’ll do the same as above, but only writing to 16 bytes in each cache line. 

 
        mem = 4096                      ; Write 4KB 

        cnt = mem/(8*64)                ; 8 cache lines each iteration 

        dist = 64 

        mov     ecx, cnt 

loop1:  movapd  [esi+0*dist], xmm1      ; Write 8 cache lines 

        movapd  [esi+1*dist], xmm1 

        movapd  [esi+2*dist], xmm1 

        movapd  [esi+3*dist], xmm1 

        movapd  [esi+4*dist], xmm1 

        movapd  [esi+5*dist], xmm1 

        movapd  [esi+6*dist], xmm1 

        movapd  [esi+7*dist], xmm1 

        lea     esi, [esi+8*dist]       ; Next set of 8 cache lines 

        sub     ecx, 1 

        jnz     loop1 

        lea     esi, [esi-mem] 

 

Timing for the above on a 1.4GHz P4 with PC600 memory: 

Mem Clocks  Clocks per 

iteration 

Comments 

4096 (4KB) 706 88.25 Same as timing above 

 

Conclusions:  This indicates that each write takes 11 clocks.  Write-combining was of no value in the 

previous benchmark.  I speculate the 14 clocks in the contiguous write case is broken down as follows, 11 

for the write to L2 cache and 1 clock for each of the 3 movapd write-combinings that took place. 

 

Cost of a TLB miss 
 

This code reads one cache line from each 4KB page.  The L1 and L2 cache line collisions are minimized 

so that we can analyze the cost of a TLB miss. 

 
        tlbs = 32 

        cnt = tlbs/8 

        mov     ecx, cnt 

        sub     eax, eax 



loop1:  movapd  xmm1, [esi]             ; Read from a 4KB page 

        lea     esi, [esi+4096+64]      ; Different line, next page 

        add     al, 256/8               ; 8 inner loops - for 

        jnc     loop1    ; perfect branch prediction 

        sub     ecx, 1 

        jnz     loop1 

        lea     esi, [esi-tlbs*(4096+64)] 

 

Timing for the above on a 1.4GHz P4 with PC600 memory: 

Tlbs Clocks Clocks per TLB Comments 

32 82 2.56  

64 147 2.3 Timings vary widely 

72 357 4.95 TLB miss penalty starting to kick in 

128 2608 20.38 Should be no TLB hits 

 

Conclusion:  A TLB miss where the page table entry is in the L2 cache costs 18 clocks. 

 

Real world programs – reading and writing contiguous data 
 

The above examples are nice, but most applications read data, operate on it, and write it back. 

 
        mem = 4096                      ; Work on 4KB 

        cnt = mem/64                    ; 64 bytes per iteration 

        mov     ecx, cnt 

loop1:  movapd  xmm0, [esi]             ; Read one cache line 

        movapd  xmm1, [esi+16] 

        movapd  xmm2, [esi+32] 

        movapd  xmm3, [esi+48] 

        subpd   xmm0, xmm0              ; Operate on the data 

        pxor    xmm1, xmm1 

        subpd   xmm2, xmm2 

        pxor    xmm3, xmm3 

        movapd  [esi], xmm0             ; Write the cache line 

        movapd  [esi+16], xmm1 

        movapd  [esi+32], xmm2 

        movapd  [esi+48], xmm3 

        lea     esi, [esi+64]           ; Next cache line 

        sub     ecx, 1 

        jnz     loop1 

        lea     esi, [esi-mem] 

 

Timing for the above on a 1.4GHz P4 with PC600 memory: 

Mem Clocks  Clocks per 64 

byte cache line 

Bandwidth Comments 

4096 (4KB) 901 14.07 6.36GB/sec Limited by write-through to L2 speed 

65536 (64KB) 24669 24.09 3.72GB/sec  



1048576 (1MB) 1893992 115.60 0.78GB/sec  

 
Conclusions:  We need a good explanation for the 24 clock number in the L2 cache timing.  Ideas? 

 

If you want to write a program that is CPU bound instead of memory bandwidth bound, you must perform 

at least 116 clocks of ALU/FPU instructions for every 64 bytes read!  Obviously, it is very difficult to 

do this for applications whose data does not fit in the L2 cache. 

 

Now let’s try replacing the last 4 movapd instructions with movntpd: 

Mem Clocks  Clocks per 64 

byte cache line 

Bandwidth Comments 

1048576 (1MB) 1822550 111.24 0.81GB/sec  

 

Conclusion:  Not much difference.  This could be within our margin of error in timing or it could indicate 

that there is a slight penalty for reading into a dirty cache line as opposed to writing dirty cache lines 

immediately.  Warning: Even though this benchmark suggests using movntpd, using movapd is probably 

advantageous.  In programs that are not limited by memory bandwidth, you may well be able to 

completely hide the write time by using prefetch instructions.  Just be aware in scheduling your prefetch 

instructions that the cache line you are reading may force a write prior to the read. 

 

In coding one application, I thought it would be advantageous to use the clflush instruction to write out 

dirty cache lines during a period where the program was CPU bound (a kind of prefetcht1 instruction in 

reverse!)  This turned out to be a losing move.  Adding a “clflush [esi]” instruction after the 4 write 

instructions balloons the timing to 2625967 clocks.  Avoid clflush at all costs. 

 

 

Now what happens when we read from one area of memory and write to another: 

 
        mem = 1048576                   ; Work on 1MB 

        cnt = mem/64                    ; 64 bytes per iteration 

        mov     ecx, cnt 

loop1:  movapd  xmm0, [esi]             ; Read one cache line 

        movapd  xmm1, [esi+16] 

        movapd  xmm2, [esi+32] 

        movapd  xmm3, [esi+48] 

        subpd   xmm0, xmm0              ; Operate on the data 

        pxor    xmm1, xmm1 

        subpd   xmm2, xmm2 

        pxor    xmm3, xmm3 

        movntpd  [esi+mem], xmm0        ; Write the cache line 

        movntpd  [esi+mem+16], xmm1 

        movntpd  [esi+mem+32], xmm2 

        movntpd  [esi+mem+48], xmm3 

        lea     esi, [esi+64]           ; Next cache line 

        sub     ecx, 1 

        jnz     loop1 



        lea     esi, [esi-mem] 

 

Timing for the above on a 1.4GHz P4 with PC600 memory: 

Mem Clocks  Clocks per 64 

byte cache line 

Bandwidth Comments 

1048576 (1MB) 1680771 102.59 0.87GB/sec  

 
Conclusions:  Why is this 10% faster than writing to the cache line just read in? 

 

A real world program – fast Fourier transform on a huge data set 
 

I run a distributed computing search for large prime numbers at http://www.mersenne.org/prime.htm.  The 

program performs fast Fourier transforms on large data sets (up to 4 million doubles – 32MB of data).  

The present program is all assembly language and needs to be upgraded with p4 optimized code.  Using 

SSE2 instructions and being mindful of  P4 cache considerations should yield a threefold performance 

boost.  Hopefully, what I learn in constructing the basic building blocks of this FFT will yield some 

insights useful to other P4 assembly language programmers. 

 

All you need to know about fast Fourier transforms is they perform a ton of floating point operations in a 

regular, but non-contiguous data access pattern. 

 

We will analyze using the variations of the macro below.  What it does is unimportant.  It reads 8 XMM 

registers from 8 different cache lines, does stuff, and writes the new values back.  Since it does 20 addpd 

and subpd instructions, a best case timing is 40 clocks. 

 
test_macro MACRO R1,R2,R3,R4,R5,R6,R7,R8 

        movapd  xmm0, R4                ;; R4 

        movapd  xmm1, R8                ;; R8 

        subpd   xmm0, xmm1              ;; new R8 = R4 - R8 

        movapd  xmm2, R2                ;; R2 

        movapd  xmm3, R6                ;; R6 

        subpd   xmm2, xmm3              ;; new R6 = R2 - R6 

        addpd   xmm1, R4                ;; new R4 = R4 + R8 

         movapd xmm7, XMM_SQRTHALF      ;; square root of 1/2 

         mulpd  xmm0, xmm7              ;; R8 = R8 * square root 

        addpd   xmm3, R2                ;; new R2 = R2 + R6 

         mulpd  xmm2, xmm7              ;; R6 = R6 * square root 

        movapd  xmm4, R1                ;; R1 

        movapd  xmm5, R5                ;; R5 

        addpd   xmm5, xmm4              ;; new R1 = R1 + R5 

         subpd  xmm3, xmm1              ;; R2 = R2 - R4 (final R4) 

         multwo xmm1                    ;; R4 = R4 * 2 

        movapd  xmm6, R3                ;; R3 

        movapd  xmm7, R7                ;; R7 

        addpd   xmm7, xmm6              ;; new R3 = R3 + R7 

         subpd  xmm2, xmm0              ;; R6 = R6 - R8 (Real part) 

http://www.mersenne.org/prime.htm


         multwo xmm0                    ;; R8 = R8 * 2 

         subpd  xmm5, xmm7              ;; R1 = R1 - R3 (final R3) 

         multwo xmm7                    ;; R3 = R3 * 2 

        subpd   xmm4, R5                ;; new R5 = R1 - R5 

         addpd  xmm1, xmm3              ;; R4 = R2 + R4 (new R2) 

        addpd   xmm0, xmm2              ;; R8 = R6 + R8 (Imag. part) 

        subpd   xmm4, xmm2              ;; R5 = R5 - R6 (final R7) 

        multwo  xmm2                    ;; R6 = R6 * 2 

        subpd   xmm6, R7                ;; new R7 = R3 - R7 

         addpd  xmm7, xmm5              ;; R3 = R1 + R3 (new R1) 

        subpd   xmm6, xmm0              ;; R7 = R7 - R8 (final R8) 

        multwo  xmm0                    ;; R8 = R8 * 2 

        subpd   xmm7, xmm1              ;; R1 = R1 - R2 (final R2) 

        multwo  xmm1                    ;; R2 = R2 * 2 

        movapd  R4, xmm3 

        movapd  R3, xmm5 

        addpd   xmm2, xmm4              ;; R6 = R5 + R6 (final R5) 

        addpd   xmm0, xmm6              ;; R8 = R7 + R8 (final R6) 

        addpd   xmm1, xmm7              ;; R2 = R1 + R2 (final R1) 

        movapd  R7, xmm4 

        movapd  R8, xmm6 

        movapd  R2, xmm7 

        movapd  R5, xmm2 

        movapd  R6, xmm0 

        movapd  R1, xmm1 

        ENDM 

 
test_disp MACRO mac, s, d1, d2, d4 
        mac [s],[s+d1],[s+d2],[s+d2+d1],[s+d4],[s+d4+d1],[s+d4+d2],[s+d4+d2+d1] 

        ENDM 

 
multwo  MACRO   r 

        mulpd   r, XMM_TWO 

        ENDM 

 

I time the above macro 3 ways, using 128 bytes, 2KB, or 64KB.  The 128 

bytes and 2KB timings should give best-case scenarios – operating out 

of the fast L1 cache.  The 2KB example will imitate the loop 

constructs typical in an FFT program. The 64KB example is more like 

how I’ll be using the macro – operating out of the L2 cache. 

 

use_128_bytes: 

        mov     edx, macro_count 

loop2:  test_disp test_macro, esi, 64, 128, 256 

        sub     edx, 1                  ; Check loop counter 

        jnz     loop2                   ; Loop if necessary 

 



use_2KB: 

        mov     edx, macro_count/16 

        sub     eax, eax 

loop3:  test_disp test_macro, esi, 64, 128, 256 

        lea     esi, [esi+16] 

        add     al, 256/4               ; 4 XMMs per cache line 

        jnc     loop3 

        lea     esi, [esi-4*16+512] 

        add     ah, 256/4               ; 4 512-byte blocks in 2KB 

        jnc     loop3 

        lea     esi, [esi-4*512] 

        sub     edx, 1                  ; Check loop counter 

        jnz     loop3                   ; Loop if necessary 

 

use_64KB: 

        mov     edx, macro_count/512 

        sub     eax, eax 

loop4:  test_disp test_macro, esi, 64, 128, 256 

        lea     esi, [esi+16] 

        add     al, 256/4               ; 4 XMMs per cache line 

        jnc     loop4 

        lea     esi, [esi-4*16+512] 

        add     ah, 256/128             ; 128 512-byte blocks in 64KB 

        jnc     loop4 

        lea     esi, [esi-128*512] 

        sub     edx, 1                  ; Check loop counter 

        jnz     loop4                   ; Loop if necessary 

 

Timing for the above on a 1.4GHz P4 with PC600 memory: 

Bytes processed Average clocks 

per test_macro 

Comments 

128 106.2 Limited by write-through to L2 speed 

2KB 88.8  

64KB 104.0  

 

Conclusions:  No where near the 40 clocks we hoped for.  The 2KB case clearly seems limited by the 11 

clocks per L1 write-through operation.  The 128 byte example is probably incurring some store-

forwarding penalties.  The 64KB example is unable to hide the slower L2 cache latencies.  This might be 

due to using bandwidth for L1 write-throughs? 

 

In any event, it seems my FFT cannot be an in-place FFT.  Fortunately, it is not hard to modify the code 

to read from 8 cache lines and write contiguously to a small memory block.  Then later read from the 

small memory block and write contiguously back to my FFT data area. 

 

The new macro is as such: 

 
test_macro MACRO dstreg,R1,R2,R3,R4,R5,R6,R7,R8 



        movapd  xmm0, R4                ;; R4 

        movapd  xmm1, R8                ;; R8 

        subpd   xmm0, xmm1              ;; new R8 = R4 - R8 

        movapd  xmm2, R2                ;; R2 

        movapd  xmm3, R6                ;; R6 

        subpd   xmm2, xmm3              ;; new R6 = R2 - R6 

        addpd   xmm1, R4                ;; new R4 = R4 + R8 

         movapd xmm7, XMM_SQRTHALF      ;; square root of 1/2 

         mulpd  xmm0, xmm7              ;; R8 = R8 * square root 

        addpd   xmm3, R2                ;; new R2 = R2 + R6 

         mulpd  xmm2, xmm7              ;; R6 = R6 * square root 

        movapd  xmm4, R1                ;; R1 

        movapd  xmm5, R5                ;; R5 

        addpd   xmm5, xmm4              ;; new R1 = R1 + R5 

         subpd  xmm3, xmm1              ;; R2 = R2 - R4 (final R4) 

         multwo xmm1                    ;; R4 = R4 * 2 

        movapd  xmm6, R3                ;; R3 

        movapd  xmm7, R7                ;; R7 

        addpd   xmm7, xmm6              ;; new R3 = R3 + R7 

         subpd  xmm2, xmm0              ;; R6 = R6 - R8 (Real part) 

         multwo xmm0                    ;; R8 = R8 * 2 

         subpd  xmm5, xmm7              ;; R1 = R1 - R3 (final R3) 

         multwo xmm7                    ;; R3 = R3 * 2 

        subpd   xmm4, R5                ;; new R5 = R1 - R5 

         addpd  xmm1, xmm3              ;; R4 = R2 + R4 (new R2) 

        addpd   xmm0, xmm2              ;; R8 = R6 + R8 (Imag. part) 

        subpd   xmm4, xmm2              ;; R5 = R5 - R6 (final R7) 

        multwo  xmm2                    ;; R6 = R6 * 2 

        subpd   xmm6, R7                ;; new R7 = R3 - R7 

         addpd  xmm7, xmm5              ;; R3 = R1 + R3 (new R1) 

        subpd   xmm6, xmm0              ;; R7 = R7 - R8 (final R8) 

        multwo  xmm0                    ;; R8 = R8 * 2 

        subpd   xmm7, xmm1              ;; R1 = R1 - R2 (final R2) 

        multwo  xmm1                    ;; R2 = R2 * 2 

        movapd  [dstreg+3*16], xmm3 

        movapd  [dstreg+2*16], xmm5 

        addpd   xmm2, xmm4              ;; R6 = R5 + R6 (final R5) 

        addpd   xmm0, xmm6              ;; R8 = R7 + R8 (final R6) 

        addpd   xmm1, xmm7              ;; R2 = R1 + R2 (final R1) 

        movapd  [dstreg+6*16], xmm4 

        movapd  [dstreg+7*16], xmm6 

        movapd  [dstreg+1*16], xmm7 

        movapd  [dstreg+4*16], xmm2 

        movapd  [dstreg+5*16], xmm0 

        movapd  [dstreg+0*16], xmm1 

        ENDM 

 



test_disp MACRO mac, s, dst, d1, d2, d4 
        mac dst,[s],[s+d1],[s+d2],[s+d2+d1],[s+d4],[s+d4+d1],[s+d4+d2],[s+d4+d2+d1] 

        ENDM 

 
use_128_bytes: 

        mov     edx, macro_count 

loop2:  test_disp test_macro, esi, ebp, 64, 128, 256 

        sub     edx, 1                  ; Check loop counter 

        jnz     loop2                   ; Loop if necessary 

 

use_2KB: 

        mov     edx, macro_count/16 

        sub     eax, eax 

loop3:  test_disp test_macro, esi, ebp, 64, 128, 256 

        lea     esi, [esi+16] 

        lea     ebp, [ebp+128] 

        add     al, 256/4               ; 4 XMMs per cache line 

        jnc     loop3 

        lea     esi, [esi-4*16+512] 

        lea     ebp, [ebp-4*128] 

        add     ah, 256/4               ; 4 512-byte blocks in 2KB 

        jnc     loop3 

        lea     esi, [esi-4*512] 

        sub     edx, 1                  ; Check loop counter 

        jnz     loop3                   ; Loop if necessary 

 

use_64KB: 

        mov     edx, macro_count/512 

        sub     eax, eax 

loop4:  test_disp test_macro, esi, ebp, 64, 128, 256 

        lea     esi, [esi+16] 

        lea     ebp, [ebp+128] 

        add     al, 256/4               ; 4 XMMs per cache line 

        jnc     loop4 

        lea     esi, [esi-4*16+512] 

        lea     ebp, [ebp-4*128] 

        add     ah, 256/128             ; 128 512-byte blocks in 64KB 

        jnc     loop4 

        lea     esi, [esi-128*512] 

        sub     edx, 1                  ; Check loop counter 

        jnz     loop4                   ; Loop if necessary 

 

Timing for the above on a 1.4GHz P4 with PC600 memory: 

Bytes processed Average clocks 

per test_macro 

Comments 

128 40.0 Perfect! 

2KB 40.0 My funny looping constructs cost nothing! 



64KB 45.9 Still some work to be done. 

 

Conclusions:  Excellent progress – an impressive display by the P4 instruction scheduler.  We still need to 

work on ways to reduce the penalty of operating out of the L2 cache. 

 

The following examples detail my attempts at reducing the 5.9 clock penalty.  Our earlier examples 

suggest preloading the cache lines into the L1 cache will be helpful. 

 
use_64KB: 

        mov     edx, macro_count/512 

        sub     eax, eax 

loop4:  test_disp test_macro, esi, ebp, 64, 128, 256 

        lea     esi, [esi+16] 

        lea     ebp, [ebp+128] 

        add     al, 256/4               ; 4 XMMs per cache line 

        jnc     loop4 

        mov  ebx, [esi-4*16+512+512] ; Preload cache lines into L1 

        mov  ebx, [esi-4*16+512+512+128] 

        mov  ebx, [esi-4*16+512+512+256] 

        mov  ebx, [esi-4*16+512+512+384] 

        mov  ebx, [esi-4*16+512+512+64] 

        mov  ebx, [esi-4*16+512+512+128+64] 

        mov  ebx, [esi-4*16+512+512+256+64] 

        mov     ebx, [esi-4*16+512+512+384+64] 

        lea     esi, [esi-4*16+512] 

        lea     ebp, [ebp-4*128] 

        add     ah, 256/128             ; 128 512-byte blocks in 64KB 

        jnc     loop4 

        lea     esi, [esi-128*512] 

        sub     edx, 1                  ; Check loop counter 

        jnz     loop4                   ; Loop if necessary 

 

Timing for the above on a 1.4GHz P4 with PC600 memory: 

Bytes processed Average clocks 

per test_macro 

Comments 

64KB 45.9 No change 

 

I next tried moving the 
        lea     esi, [esi+16] 

as early as possible.  That is, after the 
        subpd   xmm6, R7                ;; new R7 = R3 - R7 

instruction.  This should make little or no difference since the P4 should have no difficulty scheduling the 

lea instruction.  However, I wanted to give the processor every opportunity to schedule the preloads as 

soon as possible. 

 

Timing for the above on a 1.4GHz P4 with PC600 memory: 

Bytes processed Average clocks Comments 



per test_macro 

64KB 42.7 Wow!  A theoretically useless change saves 3 clocks 

 

Next I tried to distribute the L1 cache preloads more evenly at the cost of using another register. 

 
use_64KB: 

        mov     edx, macro_count/512 

        sub     eax, eax 

        lea     ecx, [esi+640]          ; Preload 10 cache lines ahead 

loop4:  test_disp test_macro, esi, ebp, 64, 128, 256 

        mov     ebx, [ecx]              ; Preload cache lines into L1 

        mov     ebx, [ecx+64] 

        lea     ecx, [ecx+128] 

        lea     esi, [esi+16] 

        lea     ebp, [ebp+128] 

        add     al, 256/4               ; 4 XMMs per cache line 

        jnc     loop4 

        lea     esi, [esi-4*16+512] 

        lea     ebp, [ebp-4*128] 

        add     ah, 256/128             ; 128 512-byte blocks in 64KB 

        jnc     loop4 

        lea     esi, [esi-128*512] 

        lea     ecx, [ecx-128*512] 

        sub     edx, 1                  ; Check loop counter 

        jnz     loop4                   ; Loop if necessary 

 

Timing for the above on a 1.4GHz P4 with PC600 memory: 

Bytes processed Average clocks 

per test_macro 

Comments 

64KB 41.1 As coded above 

64KB 40.9 With “lea esi, [esi+16]” moved as described earlier 

 

Conclusions:  While I’ve not figured out a way to get the perfect 40.0 clocks, I have gotten close.  While I 

don’t have an explanation for the observed behavior, we can conclude that programs should endeavor to 

compute addresses as early as possible and preload the L1 cache if possible. 

  

A real world program – fast Fourier transform on a huge data set (continued) 
 

We’ve shown that the most basic of FFT building locks can come very close to perfect scheduling 

running out of the L2 cache.  Now we’ll organize put together many executions of the test_macro building 

block that emulates how my FFT operates on 64KB of data.  We’ll test this running on the same 64KB 

over and over again as well as operating on contiguous 64KB blocks of main memory.  We hope to use 

prefetch to eliminate all waiting for main memory. 

 

Note:  I’ve changed the test_macro below to accept an argument specifying how much the source register 

should be incremented. 



 
test_macro MACRO srcreg,inc,dstreg,R1,R2,R3,R4,R5,R6,R7,R8 

        movapd  xmm0, R4                ;; R4 

        movapd  xmm1, R8                ;; R8 

        subpd   xmm0, xmm1              ;; new R8 = R4 - R8 

        movapd  xmm2, R2                ;; R2 

        movapd  xmm3, R6                ;; R6 

        subpd   xmm2, xmm3              ;; new R6 = R2 - R6 

        addpd   xmm1, R4                ;; new R4 = R4 + R8 

         movapd xmm7, XMM_SQRTHALF      ;; square root of 1/2 

         mulpd  xmm0, xmm7              ;; R8 = R8 * square root 

        addpd   xmm3, R2                ;; new R2 = R2 + R6 

         mulpd  xmm2, xmm7              ;; R6 = R6 * square root 

        movapd  xmm4, R1                ;; R1 

        movapd  xmm5, R5                ;; R5 

        addpd   xmm5, xmm4              ;; new R1 = R1 + R5 

         subpd  xmm3, xmm1              ;; R2 = R2 - R4 (final R4) 

         multwo xmm1                    ;; R4 = R4 * 2 

        movapd  xmm6, R3                ;; R3 

        movapd  xmm7, R7                ;; R7 

        addpd   xmm7, xmm6              ;; new R3 = R3 + R7 

         subpd  xmm2, xmm0              ;; R6 = R6 - R8 (Real part) 

         multwo xmm0                    ;; R8 = R8 * 2 

         subpd  xmm5, xmm7              ;; R1 = R1 - R3 (final R3) 

         multwo xmm7                    ;; R3 = R3 * 2 

        subpd   xmm4, R5                ;; new R5 = R1 - R5 

         addpd  xmm1, xmm3              ;; R4 = R2 + R4 (new R2) 

        addpd   xmm0, xmm2              ;; R8 = R6 + R8 (Imag. part) 

        subpd   xmm4, xmm2              ;; R5 = R5 - R6 (final R7) 

        multwo  xmm2                    ;; R6 = R6 * 2 

        subpd   xmm6, R7                ;; new R7 = R3 - R7 

        IF inc NE 0 

        add     srcreg, inc 

        ENDIF 

         addpd  xmm7, xmm5              ;; R3 = R1 + R3 (new R1) 

        subpd   xmm6, xmm0              ;; R7 = R7 - R8 (final R8) 

        multwo  xmm0                    ;; R8 = R8 * 2 

        subpd   xmm7, xmm1              ;; R1 = R1 - R2 (final R2) 

        multwo  xmm1                    ;; R2 = R2 * 2 

        addpd   xmm2, xmm4              ;; R6 = R5 + R6 (final R5) 

        addpd   xmm0, xmm6              ;; R8 = R7 + R8 (final R6) 

        addpd   xmm1, xmm7              ;; R2 = R1 + R2 (final R1) 

        movapd  [dstreg+0*16], xmm1 

        movapd  [dstreg+1*16], xmm7 

        movapd  [dstreg+2*16], xmm5 

        movapd  [dstreg+3*16], xmm3 

        movapd  [dstreg+4*16], xmm2 



        movapd  [dstreg+5*16], xmm0 

        movapd  [dstreg+6*16], xmm4 

        movapd  [dstreg+7*16], xmm6 

        ENDM 

 

test_disp MACRO mac, s, inc, dst, d1, d2, d4 
   mac s,inc,dst,[s],[s+d1],[s+d2],[s+d2+d1],[s+d4],[s+d4+d1],[s+d4+d2],[s+d4+d2+d1] 

        ENDM 

 

Here’s the new macro that executes the above macro 4608 times. Don’t worry about the details too much.  

All you really need to know is it executes the macro 512 times in place, then 4 times it executes the macro 

1024 times – copying data to a small scratch area and back to the source area. 
 

xpass2 MACRO 

        LOCAL   b1b, b2a, b2b, b3b, b4a, b4b, b5b 

        LOCAL   b6a, b6b, b7b, b8a, b8b, b9b, bab 

 

        sub ecx, ecx 

 

; FFT levels 1-2 in place 

 

        mov     eax, 512                ;; 512 iterations 

b1b:    test_disp test_macro, esi, 0, esi, 16, 32, 64 

        lea     esi, [esi+128] 

        sub     eax, 1                  ;; Test inner loop counter 

        jnz     b1b                     ;; Iterate if necessary 

 

; FFT levels 3-4 to scratch area 

 

        lea     esi, [esi-512*128]      ;; Next source pointer 

b2a:    mov     ebp, OFFSET XMM_SCRATCH_AREA 

b2b:    test_disp test_macro, esi, 32, ebp, 16, 256, 512 

        lea     ebp, [ebp+128] 

        add     al, 256/4               ;; Test inner loop counter 

        jnc     b2b                     ;; Iterate if necessary 

        lea     esi, [esi-4*32+4*256]   ;; Next source pointer 

        add     ah, 256/4               ;; Test inner loop counter 

        jnc     b2b                     ;; Iterate if necessary 

 

; FFT levels 5-6 from scratch area 

 

        lea     esi, [esi-16*256]       ;; Next source pointer 

        mov     ebp, OFFSET XMM_SCRATCH_AREA 

b3b:    test_disp test_macro, ebp, 128, esi, 16, 32, 64 

        lea     esi, [esi+256] 

        add     al, 256/16 

        jnc     b3b 



 

        add     cl, 256/16              ;; 16 iterations 

        jnc     b2a                     ;; Iterate if necessary 

        lea     esi, [esi-256*256+128]  ;; Next source pointer 

        add     ch, 256/2               ;; 2 iterations 

        jnc     b2a                     ;; Iterate if necessary 

 

; FFT levels 7-8 to scratch area 

 

        lea     esi, [esi-2*128]        ;; Next source pointer 

b4a:    mov     ebp, OFFSET XMM_SCRATCH_AREA 

b4b:    test_disp test_macro, esi, 32, ebp, 16, 256, 512 

        lea     ebp, [ebp+128] 

        add     al, 256/4               ;; Test inner loop counter 

        jnc     b4b                     ;; Iterate if necessary 

        lea     esi, [esi-4*32+4*256]   ;; Next source pointer 

        add     ah, 256/4               ;; Test inner loop counter 

        jnc     b4b                     ;; Iterate if necessary 

 

; FFT levels 9-10 from scratch area 

 

        lea     esi, [esi-16*256]       ;; Next source pointer 

        mov     ebp, OFFSET XMM_SCRATCH_AREA 

b5b:    test_disp test_macro, ebp, 128, esi, 16, 32, 64 

        lea     esi, [esi+256] 

        add     al, 256/16 

        jnc     b5b 

 

        add     cl, 256/16              ;; 16 iterations 

        jnc     b4a                     ;; Iterate if necessary 

        lea     esi, [esi-256*256+128]  ;; Next source pointer 

        add     ch, 256/2               ;; 2 iterations 

        jnc     b4a                     ;; Iterate if necessary 

 

; FFT levels 7-8 to scratch area 

 

        lea     esi, [esi-2*128]        ;; Next source pointer 

b6a:    mov     ebp, OFFSET XMM_SCRATCH_AREA 

b6b:    test_disp test_macro, esi, 32, ebp, 16, 256, 512 

        lea     ebp, [ebp+128] 

        add     al, 256/4               ;; Test inner loop counter 

        jnc     b6b                     ;; Iterate if necessary 

        lea     esi, [esi-4*32+4*256]   ;; Next source pointer 

        add     ah, 256/4               ;; Test inner loop counter 

        jnc     b6b                     ;; Iterate if necessary 

 

; FFT levels 5-6 from scratch area 



 

        lea     esi, [esi-16*256]       ;; Next source pointer 

        mov     ebp, OFFSET XMM_SCRATCH_AREA 

b7b:    test_disp test_macro, ebp, 128, esi, 16, 32, 64 

        lea     esi, [esi+256] 

        add     al, 256/16 

        jnc     b7b 

 

        add     cl, 256/16              ;; 16 iterations 

        jnc     b6a                     ;; Iterate if necessary 

        lea     esi, [esi-256*256+128]  ;; Next source pointer 

        add     ch, 256/2               ;; 2 iterations 

        jnc     b6a                     ;; Iterate if necessary 

 

; FFT levels 3-4 to scratch area 

 

        lea     esi, [esi-2*128]        ;; Next source pointer 

b8a:    mov     ebp, OFFSET XMM_SCRATCH_AREA 

b8b:    test_disp test_macro, esi, 32, ebp, 16, 256, 512 

        lea     ebp, [ebp+128] 

        add     al, 256/4               ;; Test inner loop counter 

        jnc     b8b                     ;; Iterate if necessary 

        lea     esi, [esi-4*32+4*256]   ;; Next source pointer 

        add     ah, 256/4               ;; Test inner loop counter 

        jnc     b8b                     ;; Iterate if necessary 

 

; FFT levels 1-2 from scratch area 

 

        lea     esi, [esi-16*256]       ;; Next source pointer 

        mov     ebp, OFFSET XMM_SCRATCH_AREA 

b9b:    test_disp test_macro, ebp, 128, esi, 16, 32, 64 

        lea     esi, [esi+256] 

        add     al, 256/16 

        jnc     b9b 

 

        add     cl, 256/16              ;; 16 iterations 

        jnc     b8a                     ;; Iterate if necessary 

        lea     esi, [esi-256*256+128]  ;; Next source pointer 

        add     ch, 256/2               ;; 2 iterations 

        jnc     b8a                     ;; Iterate if necessary 

 

        lea     esi, [esi-2*128]        ;; Restore source pointer 

        ENDM 

 

The macro is timed two ways: 
 

in_place: 



        mov     edx, 100 

loop1:  xpass2 

        sub     edx, 1 

        jnz     loop1 

 

main_memory: 

        mov     edx, 100 

loop2:  xpass2 

        lea     esi, [esi+65536] 

        sub     edx, 1 

        jnz     loop2 

 

Timing for the above on a 1.4GHz P4 with PC600 memory: 

Memory access 

pattern 

Clocks for 

each xpass2 

Clocks per 64 byte 

cache line processed 

Clocks per test_macro 

call 

Comments 

64KB in place 212780 207.8 46.2 Close to expected 

64KB main mem. 303935 296.8 66.0  

 

Conclusion:  The 46.2 clocks per test_macro closely matches the timings above where the L1 cache was 

not preloaded.  Note that one-third of the test_macro calls (those operating from the small scratch area) 

should be operating on data in the L1 cache.  However, preloading the L1 cache for the other two-thirds 

of the test_macro calls may well get us close to the previous section’s 40.8 clocks. 

 

Also, note the 89 clocks spent reading and writing main memory.  This makes sense as it translates to (64 

bytes written + 64 bytes read) / 89 clocks * 1.4GHz = 2GB/sec.  Using prefetch, it should be possible to 

hide these 89 clocks among the 207.8 clocks of CPU activity. 

 

 

Now we modify the in place section slightly allowing moving the computation of the new esi value earlier 

in the loop: 

 
; FFT levels 1-2 in place 

 

        mov     eax, 512                ;; 512 iterations 

        mov     ebp, esi 

b1b:    test_disp test_macro, esi, 128, ebp, 16, 32, 64 

        lea     ebp, [ebp+128] 

        sub     eax, 1                  ;; Test inner loop counter 

        jnz     b1b                     ;; Iterate if necessary 

 

Timing for the above on a 1.4GHz P4 with PC600 memory: 

Memory access 

pattern 

Clocks for 

each xpass2 

Clocks per 64 byte 

cache line processed 

Clocks per test_macro 

call 

Comments 

64KB in place 207614 202.7 45.1 Wow. 

64KB main mem. 303349 296.2 65.8  

 



Conclusion:  This is amazing.  The difference 5166 clock difference must come from the first 512 

test_macro calls.  That means, there is a 10 clock benefit to using two addressing registers and computing 

the new source register value as soon as possible. 

 

Something is fishy with the above result.  When we analyzed moving the lea instruction earlier we never 

saw a 10 clock benefit.  I tried several ideas before this rather startling discovery.  Add a nop here: 

 
; FFT levels 7-8 to scratch area 

 

        nop 

        lea     esi, [esi-2*128]        ;; Next source pointer 

b4a:    mov     ebp, OFFSET XMM_SCRATCH_AREA 

 

Timing for the above on a 1.4GHz P4 with PC600 memory: 

Memory access 

pattern 

Clocks for 

each xpass2 

Clocks per 64 byte 

cache line processed 

Clocks per test_macro 

call 

Comments 

64KB in place 203266 198.5 44.1 Wow. 

64KB main mem. 300511 293.5 65.2  

 

Conclusions:  Apparently there is an undocumented penalty dealing with code alignment! 

 

Further investigation shows that if two jump instructions are 15 bytes apart and the first jump instruction 

starts on an odd address, then the BTB fails in predicting the second jump instruction.  When I replace the 

four occurrences of: 

 
        jnc     b8b                     ;; Iterate if necessary 

        lea     esi, [esi-4*32+4*256]   ;; Next source pointer 

        add     ah, 256/4               ;; Test inner loop counter 

        jnc     b8b                     ;; Iterate if necessary 

 

with: 

 
        jnc     b8b                     ;; Iterate if necessary 

        nop 

        lea     esi, [esi-4*32+4*256]   ;; Next source pointer 

        add     ah, 256/4               ;; Test inner loop counter 

        jnc     b8b                     ;; Iterate if necessary 

 

Timing for the above on a 1.4GHz P4 with PC600 memory: 

Memory access 

pattern 

Clocks for 

each xpass2 

Clocks per 64 byte 

cache line processed 

Clocks per test_macro 

call 

Comments 

64KB in place 199998 195.3 43.4  

64KB main mem. 297440 290.5 64.5  
 



Conclusions:  Despite the P4 optimization manual saying that the P4 is less affected by code alignment 

than earlier processors, there are still circumstances where code alignment can have a major impact on 

performance. 

 

However, my findings above are pretty weird.  I can’t imagine a design decision Intel could have made 

that would result in the 15-byte even/odd anomaly.  Obviously, more research is needed on the 

implications of the P4’s branch prediction algorithm. 
 

Now, we’ll try to use prefetch to reduce the main memory timing.  Here is my first attempt: 

 
xpass2 MACRO 

        LOCAL   b1b, b2a, b2b, b3b, b4a, b4b, b5b 

        LOCAL   b6a, b6b, b7b, b8a, b8b, b9b, bab 

 

        sub     ecx, ecx 

 

;; Touch the TLBs we are about to FFT so they are marked most 

;; recently used. Then load the TLBs for the next 64KB FFT chunk 

;; so that prefetcht1 works. 

 

bab:    mov     eax, [esi] 

        lea     esi, [esi+4096]         ;; Next page 

        add     cl, 256/32              ;; 32 pages 

        jnc     bab                     ;; Iterate if necessary 

        lea     esi, [esi-32*4096]      ;; Next source pointer 

 

; FFT levels 1-2 in place 

 

        mov     eax, 512                ;; 512 iterations 

        mov     ebp, esi 

b1b:    test_disp test_macro, esi, 128, ebp, 16, 32, 64 

        lea     ebp, [ebp+128] 

        sub     eax, 1                  ;; Test inner loop counter 

        jnz     b1b                     ;; Iterate if necessary 

 

; FFT levels 3-4 to scratch area 

 

        lea     esi, [esi-512*128]      ;; Next source pointer 

b2a:    mov     ebp, OFFSET XMM_SCRATCH_AREA 

b2b:    test_disp test_macro, esi, 32, ebp, 16, 256, 512 

        lea     ebp, [ebp+128] 

        add     al, 256/4               ;; Test inner loop counter 

        jnc     b2b                     ;; Iterate if necessary 

        prefetcht1 [esi-4*32+65536] 

        lea     esi, [esi-4*32+4*256]   ;; Next source pointer 

        add     cl, 256/4               ;; Test inner loop counter 

        jnc     b2b                     ;; Iterate if necessary 



 

; FFT levels 5-6 from scratch area 

 

        lea     esi, [esi-16*256]       ;; Next source pointer 

        mov     ebp, OFFSET XMM_SCRATCH_AREA 

b3b:    test_disp test_macro, ebp, 128, esi, 16, 32, 64 

        lea     esi, [esi+256] 

        add     al, 256/16 

        jnc     b3b 

 

        add     ah, 256/16              ;; 16 iterations 

        jnc     b2a                     ;; Iterate if necessary 

        lea     esi, [esi-256*256+128]  ;; Next source pointer 

        add     ch, 256/2               ;; 2 iterations 

        jnc     b2a                     ;; Iterate if necessary 

 

; FFT levels 7-8 to scratch area 

 

        lea     esi, [esi-2*128]        ;; Next source pointer 

b4a:    mov     ebp, OFFSET XMM_SCRATCH_AREA 

b4b:    test_disp test_macro, esi, 32, ebp, 16, 256, 512 

        lea     ebp, [ebp+128] 

        add     al, 256/4               ;; Test inner loop counter 

        jnc     b4b                     ;; Iterate if necessary 

        prefetcht1 [esi-4*32+65536+256] 

        lea     esi, [esi-4*32+4*256]   ;; Next source pointer 

        add     cl, 256/4               ;; Test inner loop counter 

        jnc     b4b                     ;; Iterate if necessary 

 

; FFT levels 9-10 from scratch area 

 

        lea     esi, [esi-16*256]       ;; Next source pointer 

        mov     ebp, OFFSET XMM_SCRATCH_AREA 

b5b:    test_disp test_macro, ebp, 128, esi, 16, 32, 64 

        lea     esi, [esi+256] 

        add     al, 256/16 

        jnc     b5b 

 

        add     ah, 256/16              ;; 16 iterations 

        jnc     b4a                     ;; Iterate if necessary 

        lea     esi, [esi-256*256+128]  ;; Next source pointer 

        add     ch, 256/2               ;; 2 iterations 

        jnc     b4a                     ;; Iterate if necessary 

 

; FFT levels 7-8 to scratch area 

 

        lea     esi, [esi-2*128]        ;; Next source pointer 



b6a:    mov     ebp, OFFSET XMM_SCRATCH_AREA 

b6b:    test_disp test_macro, esi, 32, ebp, 16, 256, 512 

        lea     ebp, [ebp+128] 

        add     al, 256/4               ;; Test inner loop counter 

        jnc     b6b                     ;; Iterate if necessary 

        prefetcht1 [esi-4*32+65536+512] 

        lea     esi, [esi-4*32+4*256]   ;; Next source pointer 

        add     cl, 256/4               ;; Test inner loop counter 

        jnc     b6b                     ;; Iterate if necessary 

 

; FFT levels 5-6 from scratch area 

 

        lea     esi, [esi-16*256]       ;; Next source pointer 

        mov     ebp, OFFSET XMM_SCRATCH_AREA 

b7b:    test_disp test_macro, ebp, 128, esi, 16, 32, 64 

        lea     esi, [esi+256] 

        add     al, 256/16 

        jnc     b7b 

 

        add     ah, 256/16              ;; 16 iterations 

        jnc     b6a                     ;; Iterate if necessary 

        lea     esi, [esi-256*256+128]  ;; Next source pointer 

        add     ch, 256/2               ;; 2 iterations 

        jnc     b6a                     ;; Iterate if necessary 

 

; FFT levels 3-4 to scratch area 

 

        lea     esi, [esi-2*128]        ;; Next source pointer 

b8a:    mov     ebp, OFFSET XMM_SCRATCH_AREA 

b8b:    test_disp test_macro, esi, 32, ebp, 16, 256, 512 

        lea     ebp, [ebp+128] 

        add     al, 256/4               ;; Test inner loop counter 

        jnc     b8b                     ;; Iterate if necessary 

        prefetcht1 [esi-4*32+65536+768] 

        lea     esi, [esi-4*32+4*256]   ;; Next source pointer 

        add     cl, 256/4               ;; Test inner loop counter 

        jnc     b8b                     ;; Iterate if necessary 

 

; FFT levels 1-2 from scratch area 

 

        lea     esi, [esi-16*256]       ;; Next source pointer 

        mov     ebp, OFFSET XMM_SCRATCH_AREA 

b9b:    test_disp test_macro, ebp, 128, esi, 16, 32, 64 

        lea     esi, [esi+256] 

        add     al, 256/16 

        jnc     b9b 

 



        add     ah, 256/16              ;; 16 iterations 

        jnc     b8a                     ;; Iterate if necessary 

        lea     esi, [esi-256*256+128]  ;; Next source pointer 

        add     ch, 256/2               ;; 2 iterations 

        jnc     b8a                     ;; Iterate if necessary 

 

        lea     esi, [esi-2*128]        ;; Restore source pointer 

        ENDM 

 

Timing for the above on a 1.4GHz P4 with PC600 memory: 

Memory access 

pattern 

Clocks for 

each xpass2 

Clocks per 64 byte 

cache line processed 

Clocks per test_macro 

call 

Comments 

64KB in place 199117 194.5 43.2  

64KB main mem. 222513 217.3 48.3  

 

Since 128KB should easily fit in the cache and the prefetch instructions are spaced a good ways apart (at 

least 160 clocks), it is a little surprising that the prefetch does not completely eliminate the penalties of 

main memory access. 

 

Next, I changed the first loop to prefetch lines that weren’t prefetched as hoped in processing the previous 

64KB: 

 
b1b:    test_disp test_macro, esi, 128, ebp, 16, 32, 64 

 

 is replaced with 

 
b1b:    prefetcht1 [esi+8*128] 

        test_disp test_macro, esi, 128, ebp, 16, 32, 64 

 

Timing for the above on a 1.4GHz P4 with PC600 memory: 

Memory access 

pattern 

Clocks for 

each xpass2 

Clocks per 64 byte 

cache line processed 

Clocks per test_macro 

call 

Comments 

64KB in place 199386 194.7 43.3  

64KB main mem. 214751 209.7 46.6  

 

 

Trace cache and branch prediction 
 

I created a very simple loop and timed both the best case and average case of 200 calls to this code.  The 

results are quite puzzling: 

 
        mov     edx, 16384 

loopy:  subsd   xmm0, xmm0 

        subsd   xmm0, xmm0 

        sub     edx, 1 

        jnz     loopy 



 

Timing for the above on a 1.4GHz P4 with PC600 memory: 

Best case Average 

case 

Comments 

131280 ~190000 The average varies quite a bit. 

 

Conclusions:  Why would we not get 131,280 every time this code is executed.  On the second through 

200th calls the entire loop should be in the trace cache.  

 

Next, I tried flushing the trace cache by using self-modifying code prior to entering the loop: 

 
trace_cache_flush MACRO 

        LOCAL   rrr 

rrr:    mov     ds:BYTE PTR rrr, 0C6h 

        ENDM 

 
        mov     edx, 16384 

        trace_cache_flush 

loopy:  subsd   xmm0, xmm0 

        subsd   xmm0, xmm0 

        sub     edx, 1 

        jnz     loopy 

 

Timing for the above on a 1.4GHz P4 with PC600 memory: 

Best case Average 

case 

Comments 

131780 ~132400 Much more consistent results 

 

Conclusion:  There is some kind of flaw in the trace cache design.  I’ve tried adding nops to the loop 

(when not flushing the trace cache) to see if more could be learned.  Depending on how many nops are 

added, you will get better averages, but in no case is the result as good as flushing the trace cache. 

 

 If you have loops that are not giving you consistent timings, this might be the cause. 

 

Tricks with SSE floating point exponents 
 

In my FFT macros, I often need to multiply an XMM register by two.  At first I thought of two options: 
 ADDPD xmm, xmm   ;; Add register to itself 

Or 
 XMM_TWO DQ 2.0, 2.0 

 MULPD xmm, XMM_TWO  ;; Multiply by a global variable 

I later thought of a third option: 
 XMM_INC_EXP DB 1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0 

 PADDB xmm, XMM_INC_EXP ;; Add 1 to each exponent! 

 



In my case the ADDPD option was unattractive because I was already doing a lot of ADDPDs and they 

can only be issued every other clock cycle.  The PADDB instruction is an attractive alternative to the 

MULPD instruction in that it has a shorter latency and makes it easier for the CPU to schedule other 

MULPD instructions.  Note:  I haven’t tested the above yet! 

 

There are probably other opportunities for such optimizations. 

 

 


